Effects of Different Waveforms on the Performance of Active Capillary Dielectric Barrier Discharge Ionization Mass Spectrometry.

نویسندگان

  • Morphy C Dumlao
  • Dan Xiao
  • Daming Zhang
  • John Fletcher
  • William A Donald
چکیده

Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kVp-p high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for ~50 h by common 9 V-battery (PP3). Graphical Abstract ᅟ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ID/NI - 06 Dielectric Barrier Discharge Microplasma-Ionization for Liquid Chromatography / Mass Spectrometry

The coupling of liquid chromatography and mass spectrometry (LC/MS) has been established as one of the most powerful tools in analytical chemistry and has resulted in important advances especially in biomedical and biochemical research. The predominantly used interfaces are electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). Non-polar compounds, however, are diffi...

متن کامل

Simultaneous testing of multiclass organic contaminants in food and environment by liquid chromatography/dielectric barrier discharge ionization-mass spectrometry.

A Dielectric Barrier Discharge Ionization (DBDI) LC/MS interface is based on the use of a low-temperature helium plasma, which features the possibility of simultaneous ionization of species with a wide variety of physicochemical properties. In this work, the performance of LC/DBDI-MS for trace analysis of highly relevant species in food and environment has been examined. Over 75 relevant specie...

متن کامل

A dielectric barrier discharge ionization based interface for online coupling surface plasmon resonance with mass spectrometry.

The online combination of surface plasmon resonance (SPR) with mass spectrometry (MS) could be beneficial for accurately acquiring molecular interaction data simultaneously with their structural information at high throughputs. In this work, a novel SPR-MS interface was developed using a dielectric barrier discharge ionization (DBDI) source. The DBDI source was placed in front of the MS inlet, ...

متن کامل

Surface Decontamination by Dielectric Barrier Discharge Plasma

Background: Dielectric barrier discharge (DBD), a source of non-thermal plasma, is used in surface decontamination. Objective: To study the effect of DBD plasma treatment, we evaluated the effect of plasma exposure time on inactivation of Bacillus subtilis. Results: Applying the DBD plasma to the culture of B. subtilis caused complete sterilization of the surface without any thermal effects. In...

متن کامل

Synergetic Effects of Plasma, Temperature and Diluant on Nonoxidative Conversion of Methane to C2+ Hydrocarbons in a Dielectric Barrier Discharge Reactor

Noncatalytic and nonoxidative conversion of methane in a dielectric barrier discharge (DBD) reactor is examined at different temperatures, gas residence times and input powers. In addition, the ratio of methane to helium as a diluant, is changed in the range of 0.6 to 1.8. Results show significant synergetic effects of plasma, temperature and helium on the methane conversion and C2+</s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society for Mass Spectrometry

دوره 28 4  شماره 

صفحات  -

تاریخ انتشار 2017